
WHITE PAPER

Puppet Enterprise
vs Chef Automate

For distribution under NDA only.

puppetlabs.com

2White paper — Puppet Enterprise vs Chef Automate

ContentsContents
3 Summary

4 Comparison: Puppet Enterprise vs. Chef Automate
 Organizational scale
5 Change validation
 Time to value
6 Application & infrastructure orchestration
 Infrastructure scale
7 Windows support
 Continuous delivery
8 Supported Content

9 Organizational Scale
10 Learning Curve

11 Intelligent Orchestration
 Environment and Node Modeling
12 Continuous Delivery
13 Orchestration Control

14 How Puppet Works vs How Chef Works
 The Puppet process
16 The Chef process

17 We want to hear from you

http://puppet.com
http://puppetlabs.com

3White paper — Puppet Enterprise vs Chef Automate

Summary
This document is intended to outline the main differences between Chef’s enterprise product, Chef
Automate, and Puppet’s enterprise product, Puppet Enterprise. The first part of the document will
discuss the business use cases of Puppet Enterprise versus Chef Automate, with the technical
differences explained later in the document.

Chef Automate and Puppet Enterprise cover similar use cases, but with different approaches. This
document will give you the information you need to decide which solution is right for you.

http://puppet.com
http://puppetlabs.com

4White paper — Puppet Enterprise vs Chef Automate

Comparison: Puppet Enterprise vs. Chef Automate

Business need Puppet Enterprise Chef Automate

Organizational scale

• What it is: The ability of multiple IT teams to

successfully contribute to, collaborate with, and

benefit from an infrastructure automation solution.

• Why it matters: Larger IT organizations often have

many individual contributors and specialized teams

working together to manage infrastructure. Operating

at scale is a challenge that will never go away, and the

tools you choose can make the difference between

working effectively as a team and perpetuating — or

even reinforcing — siloed thinking, turf wars, and

disjointed processes.

 –

Large Chef code bases are

difficult for multiple teams

to manage. Different Chef

cookbooks can manage

the same configuration in

different ways. This means

that you must run automated

infrastructure testing in

order to make sure that any

node managed by several

cookbooks is actually being

managed correctly.

The expertise required to be

successful is more than most

IT teams have on Day One of

an infrastructure automation

initiative.

Puppet’s DSL is easily

adopted by non-developers.

Puppet’s built in intelligence

helps multiple teams safely

contribute to a growing

infrastructure code base. For

example, Puppet Enterprise

features configuration conflict

detection, preventing two

pieces of Puppet code —

potentially written by different

teams — from managing the

same configuration differently.

Puppet Enterprise also

includes the node graph,

which shows a node’s

resulting configuration

model so teams can quickly

understand how all the Puppet

code comes together.

http://puppet.com
http://puppetlabs.com

5White paper — Puppet Enterprise vs Chef Automate

Change validation

• What it is: Ensuring a change to a code base will have

its intended effect, and no unintended side effects.

• Why it matters: Changes to logic that figures out

what a configuration should be do not always perform

as intended, and often (unintentionally) affect

configurations that are outside the scope for the

change. Unintended misconfigurations are the leading

cause of service outages.

 –

Puppet includes a simulation

mode (no-op) built into the

core of how Puppet works.

This lets you do a test flight

of changes before actually

deploying them to ensure

desired results will be

achieved. It’s not a feature

of Puppet code. Any and all

Puppet code supports no-op.

Puppet also provides Beaker,

a Puppet code acceptance

testing tool. Beaker is

not necessary, however,

to successfully validate

Puppet code prior to node

enforcement.

Chef has a “dry run” mode, but

its ability to work depends on

how the recipes in a cookbook

are written. It is not built into

the core of how Chef works.

If a cookbook from the Chef

Supermarket, for example,

uses arbitrary Ruby code

rather than sticking to Chef’s

Ruby DSL, then dry-run mode

will not work and simulating

changes will not be possible.

Chef Automate includes

InSpec for performing

automated testing and

validation of Chef code, but

requires software engineering

skills to be used effectively.

Time to value

• What it is: How quickly your team can learn the tool

and begin using it for meaningful work.

• Why it matters: The more quickly a tool can be

used to do meaningful work, the faster you’ll realize

return on investment (ROI). The quicker a tool can

be learned, the faster your new team members can

become fully productive.

 X

Puppet’s DSL is designed

for simplicity. Rather than a

programming language like

Ruby, Puppet is a custom

language designed to be

picked up easily by people

without a background in

programming.

Puppet has a larger collection

of pre-built modules of

configuration code on the

Puppet Forge, which means

you can start automating

more workloads on day one

without needing to write code

from scratch.

Chef requires development

skills and a familiarity with

Ruby, limiting adoption due to

its high learning curve. Some

organizations end up with

workflows where operations

teams are dependent on

a dedicated development

team to write code to their

specifications, adding needless

delay to the production

lifecycle.

Chef has less pre-built content

available than Puppet.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/

6White paper — Puppet Enterprise vs Chef Automate

Application & infrastructure
orchestration

• What it is: Automatic assurance that changes

are made across multiple nodes in an ordered,

predetermined way.

• Why it matters: As IT teams manage more than

just core infrastructure configurations and

middleware with automation, the ability to make

orchestrated change is critical to using automation

to its full potential.

 –
Puppet Enterprise includes

application modeling: Puppet

code models each distributed

service that makes up

the application, as well as

each service’s underlying

infrastructure requirements.

Puppet Enterprise builds an

environment graph of every

application, every infrastructure

service, and all infrastructure

dependencies to intelligently

determine the correct order

of operations and cross-node

information sharing. Plus,

Puppet Enterprise is the single

point of visibility and control.

Chef Automate provides a

way for a pipeline project

to have dependencies on

other pipeline projects. To

manage applications made

up of several distributed

services, each service needs

to have its own pipeline

project, and each project has

to define its own immediate

project dependencies. The

complexity required to manage

distributed applications and

interdependent infrastructure

services is difficult to maintain,

and creates a high bar for IT

organizations embarking on an

automation initiative.

Infrastructure scale

• What it is: Using a management tool to manage an

ever larger number of nodes.

• Why it matters: The growth of things to manage

will never decrease. That’s true for servers, VMs,

containers, and infrastructure services. In fact,

containers and microservices dramatically increase

the moving pieces that need to be managed. Having

a tool that can manage the ever-increasing number

nodes is critical for scaling your infrastructure.

A single Puppet Enterprise

server can manage up to

30,000 nodes using Direct
Puppet and up to 1,600 nodes

in legacy enforcement mode.

Adding additional compilation

masters enables you to rapidly

and reliably scale further

as needed.

Because Chef Server does not

compile environment and node

graphs, a single Chef server

can serve tens of thousands

of nodes.

http://puppet.com
http://puppetlabs.com
https://docs.puppet.com/pe/latest/direct_puppet_workflow.html
https://docs.puppet.com/pe/latest/direct_puppet_workflow.html

7White paper — Puppet Enterprise vs Chef Automate

Windows support

• What it is: Support for Microsoft Windows operating

systems.

• Why it matters: Most IT organizations have a

diverse set of operating systems with Microsoft

operating systems almost always being one of them.

Each operating system requires their own unique

processes and point solutions. Having a tool that

manages all your operating systems, including

Windows, minimizes tool proliferation and reduces or

removes siloed teams and processes.

Puppet Enterprise has

extensive support for

Microsoft Windows Server, 7,

and Vista.

In addition, Puppet Enterprise

offers commercially supported

modules to manage nearly

every aspect of Windows

from Registry Keys and DSC
resources to SQL Server

and IIS.

Chef Automate has extensive

support for Microsoft Windows

Server, 7, and Vista.

Continuous delivery

• What it is: The ability to deploy each change at any

time that the business is ready for it.

• Why it matters: Continuous delivery improves an

organization’s ability to serve customers by lowering

deployment risk, increasing deployment cadence,

and decreasing cycle times. All of these improve time

to market, market learning, ability to take risks, and

ability to innovate.

Chef Automate includes the

pipeline management features

in the product itself.

If you already use a CI/

CD system, and add Chef

Automate, you’ll have pipeline

tool sprawl, which silos

expertise and sources of truth.

All of Chef’s orchestration

features work through the

pipeline features, so you must

initially adopt continuous

delivery in order to perform

orchestration – something

most IT organizations are not

prepared for on Day One of

their automation initiative.

Puppet Enterprise takes

a partner and ecosystem

approach, providing robust

APIs and integrations with CD

platforms such as Jenkins,

Bitbucket Pipeline, and more.

This enables you to leverage

existing investments in CI/

CD tooling and scale existing

expertise.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/dsc
https://forge.puppet.com/puppetlabs/dsc
https://forge.puppet.com/puppetlabs/sqlserver
https://forge.puppet.com/puppet/iis
http://puppet.com/jenkins
https://puppet.com/blog/puppet-enterprise-and-atlassian-bitbucket-pipelines

8White paper — Puppet Enterprise vs Chef Automate

Supported Content

• What it is: Pre-built downloadable infrastructure

code that helps you quickly adopt and manage

common technologies.

• Why it matters: Having pre-built content (Puppet

modules and Chef cookbooks) available to download

and manage common technologies rapidly increases

the speed at which new software can be adopted,

and existing infrastructure can be brought under

management. In addition, when a problem arises with

content you depend on, you need to know you can

get help quickly.

 X

Puppet not only provides

commercial support with a

SLA for many Puppet Forge
modules, but also reviews

and approves of popular
community modules.

In addition, Puppet develops

and supports several modules

exclusively available to Puppet

Enterprise customers.

Chef offers “best effort”

support for a collection of

cookbooks, with no SLA.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/modules?endorsements=supported
https://forge.puppet.com/modules?endorsements=supported
https://forge.puppet.com/modules?endorsements=approved
https://forge.puppet.com/modules?endorsements=approved

9White paper — Puppet Enterprise vs Chef Automate

Organizational Scale
Larger IT organizations often have many individual contributors and specialized teams that work
together to manage infrastructure. Operating at scale is a challenge that will never go away, and the
tools you choose can make the difference between working effectively as a team and perpetuating —
or even causing — siloed thinking, turf wars, and disjointed processes.

The tool you use needs to address several challenges:
• Detecting conflict. Any infrastructure tool needs to understand when multiple teams or

contributors intend to manage the same configuration differently. This needs to be known
prior to any work being done on the node.

• Making dependencies transparent. Infrastructure configuration can often be complex,
with layers of dependencies. It’s critical that a tool not only makes the order of operations
clear, but also makes clear the dependencies that exist between multiple configurations.

• Establishing a single source of truth. Many tools are good at managing parts of your
infrastructure. IT teams will often use one set of tools for managing and orchestrating
application deployments, and another set for enforcing core infrastructure and middleware.
It’s important that your tools can never conflict, while simultaneously ensuring that all
underlying infrastructure is in its intended state prior to deploying application services.

http://puppet.com
http://puppetlabs.com

10White paper — Puppet Enterprise vs Chef Automate

Learning Curve
Puppet’s simple configuration domain-specific language (DSL) was designed to be easily read
and written by people without a background in software development. Despite the language’s
simplicity, it features all the necessary features for defining modern configuration models such
as loops, templates, and data validation.

Unlike Chef, Puppet does not require any experience with Ruby. If someone understands Bash,
they can generally pick up Puppet.

http://puppet.com
http://puppetlabs.com

11White paper — Puppet Enterprise vs Chef Automate

Intelligent Orchestration
Puppet builds a model of every configuration on every node for an entire environment, plus
every infrastructure service distributed across multiple nodes within an environment. The model
is used to intelligently determine the correct order of operations, what information needs to be
shared between different services (credentials, locations, ports, etc.), and can show how all of
this will be done so you can review prior to the actual orchestration.

Environment and Node Modeling
When you’re managing hundreds or thousands of configurations on a single node, or managing
hundreds of different services across a multitude of business applications, it’s paramount that
you understand how all the pieces relate. This is especially true when different teams manage
different application services, and different parts of the node’s overall configuration.

As more individuals and teams begin contributing to the infrastructure codebase, the code can
quickly become a collection of black boxes. Puppet gathers all the infrastructure code assigned
to a node to generate a complete model for how the node should look. Puppet Enterprise shows
you the resulting model in an interactive graph so you can see how each piece of infrastructure
code contributes to a node’s desired state. The black box is opened, and everyone who deals
with infrastructure can see the state of things, including all the dependencies.

http://puppet.com
http://puppetlabs.com

12White paper — Puppet Enterprise vs Chef Automate

Continuous Delivery
Continuous delivery is a set of practices that enable IT to have high confidence that every
change is shippable with a push of a button, when the business is ready. These practices
come together over time and usually involve multiple teams, processes, and tools. At Puppet,
we believe these practices are independently valuable and can be used successfully without
requiring continuous delivery on Day One. This is why Puppet Enterprise is made up of
independently functioning capabilities such as node management, code management, and
orchestration — capabilities that can be put together like LEGO blocks to build the right
continuous delivery pipeline for you. The continuous delivery pipelines built with Puppet
Enterprise are adaptable over time and can be adopted incrementally.

Puppet partners with several continuous delivery vendors such as CloudBees and Atlassian to
integrate with the plethora of existing continuous delivery tools. This allows you to leverage
existing in-house expertise and investments on your path to continuous delivery.

http://puppet.com
http://puppetlabs.com

13White paper — Puppet Enterprise vs Chef Automate

Orchestration Control
Orchestration of infrastructure change shouldn’t require, nor be the sole responsibility of, a
continuous delivery pipeline. Puppet Enterprise enables applications and services to be modeled
and managed with the same Puppet code that’s used to model your underlying infrastructure.
Puppet Enterprise compiles a holistic environment graph of every application and infrastructure
service, which models their dependency relationships.

Using command line client tools, Puppet Enterprise users can direct change to as broad or as
targeted a portion of infrastructure as required for that moment. Puppet Enterprise uses the
environment model to automatically determine the order of operations and the information that
needs to be passed between nodes. Puppet Enterprise can recognize and wait for a service to
become healthy before continuing to the next step of the deployment.

http://puppet.com
http://puppetlabs.com

14White paper — Puppet Enterprise vs Chef Automate

How Puppet Works vs How Chef Works
The open-source versions of Puppet and Chef are similar in many ways, but have critical
technical differences in their approach. Puppet code is compiled on the Puppet server and
results in a directed acyclic graph (DAG) containing every resource (configuration) for a node.
The DAG is what makes Puppet unique among continuous configuration automation (CCA)
solutions. It’s also what makes Puppet smarter than any other solution. Using the DAG, Puppet
can automatically determine the order of operations, intelligently react to failure, easily react to
change events, perform simulation runs without requiring support from the Puppet code, and
guarantee run reports are accurate.

The Puppet process

The directed acyclic graph (DAG) contains every desired state and every dependency
relationship for every resource, for every node. The dependency relationships are used to
automatically determine the order in which the resources should be enforced. Note that
the order of operations is perfectly deterministic, meaning that the pre-calculated order of
operations will never change in future Puppet runs. The DAG will always be traversed in the
same order. If no relationship is specified between two resources, Puppet defaults to the order
resources that were declared in the Puppet code.

http://puppet.com
http://puppetlabs.com

15White paper — Puppet Enterprise vs Chef Automate

Whenever an infrastructure change is required (that is, there’s new Puppet code), Puppet
Enterprise goes through the following process for each node the change needs to be pushed to:

1. Read the Puppet code and compile the DAG into a catalog.

2. Send the catalog to the node.

3. Use the DAG to determine order of operations, and then enforce each resource.

4. Send the results to the Puppet server.

Having a DAG provides numerous benefits:

• Corrective change reporting. Puppet knows whether a change was required because the
node changed, or because the Puppet code changed. Puppet compares the current DAG
with the DAG of the last Puppet run. If the DAG has not changed, yet the node does not
match the desired state declared in the DAG, then an out-of-bound change occurred on the
node and a remediation, or “corrective change,” needs to take place. Chef has no ability to
know if a change is required due to a Chef recipe changing, or due to the node changing
between Chef runs.

• Simpler code. Writing Puppet code is simpler, since you focus on immediate
dependencies, not code order. This is particularly useful as the infrastructure code base
scales to manage more and more infrastructure.

• Desired state conflict detection. Puppet detects if different sections of Puppet code are
trying to manage the same resource and stops, alerting you to the error prior to doing
any work on the node. This provides confidence that configurations truly are in the
intended state.

• Better failure handling. When a failure occurs, Puppet can automatically skip the
resources that were dependent on the failing resource, while continuing on to manage the
rest of the node configurations that are unrelated to the failure.

• True simulation mode. No-op is built into the core of the model. Because only resources
are allowed in the catalog (the DAG’s artifact), no arbitrary code can be executed on the
host. The purely stateful resource model means no-op runs can be trusted. Plus, no special
conditionals are required in the Puppet code for no-op to work. With Chef, arbitrary Ruby
can be run in a Chef recipe, which will not be respected by Chef’s dry run without explicit
support. Cookbooks with arbitrary Ruby code can make changes to a node even if Chef is
run in dry-run mode.

• Trusted reporting. Reports are guaranteed to be accurate. Again, since arbitrary code
cannot be run on the node, the events in the run report are guaranteed to be all the events
that took place. If arbitrary Ruby code is executed in a Chef recipe, that code’s changes
cannot be reflected in the Chef report. You don’t know the true state of your infrastructure.

http://puppet.com
http://puppetlabs.com

16White paper — Puppet Enterprise vs Chef Automate

The Chef process

The Chef server is essentially a file server. It determines which cookbooks should be delivered
to the agents, and which recipes should be run. All code executes on the agents themselves.
The Chef agent simply executes as the recipes are read, one line at a time. Chef’s imperative,
procedural approach and lack of a DAG has disadvantageous, compared to Puppet’s declarative,
model-driven approach:

• Arbitrary Ruby code execution means no dependable way to simulate the changes Chef
code would make.

• Configurations can be changed several different ways in the same Chef run, so you can’t
trust that the node is in its desired state at the end of the run.

• Relationships between components are unclear on complex systems.

• When writing cookbooks, you can’t know whether a dependent configuration from another
cookbook will be ready at run time.

• Reports cannot be trusted if arbitrary Ruby code was run outside of Chef’s Ruby DSL.

http://puppet.com
http://puppetlabs.com

17White paper — Puppet Enterprise vs Chef Automate

We want to hear from you
We hope we’ve helped you understand the differences between Chef Automate and Puppet
Enterprise. If you have any concerns or questions this document didn’t answer, or if you find
anything in this document is inaccurate, please reach out to your Puppet representative.
We will be happy to help.

http://puppet.com
http://puppetlabs.com

	Summary
	Comparison: Puppet Enterprise vs. Chef Automate
	Organizational scale
	Change validation
	Time to value
	Application & infrastructure orchestration
	Infrastructure scale
	Windows support
	Continuous delivery
	Supported Content

	Organizational Scale
	Learning Curve

	Intelligent Orchestration
	Environment and Node Modeling
	Continuous Delivery
	Orchestration Control

	How Puppet Works vs How Chef Works
	The Puppet process
	The Chef process

	We want to hear from you

